
 

 

Senior Design Project 

 

QUEX 

 

High-Level Design Report 

 

Project Members: 

Barış Ardıç 21401578 

Emir Acımış 21201233 

Umutcan Aşutlu 21301093 

Mert Kara 21400976 

Atakan Özdemir 21301134 

 

Supervisor: Çiğdem Gündüz Demir 

Jury Members: Fazlı Can, Hamdi Dibeklioğlu 

  



2 
 

 Table of Contents 
1 Introductıon......................................................................................................................... 3 

1.1 Purpose of The System ................................................................................................... 3 

1.2 Design Goals .................................................................................................................. 4 

1.2.1 Extensibility ............................................................................................................ 4 

1.2.2 Supportability.......................................................................................................... 4 

1.2.3 Usability.................................................................................................................. 4 

1.2.4 Availability .............................................................................................................. 5 

1.2.5 Reliability ................................................................................................................ 5 

1.2.6 Portability ............................................................................................................... 5 

1.2.7 Scalability ............................................................................................................... 5 

1.3 Definitions ..................................................................................................................... 6 

1.4 Overview ....................................................................................................................... 6 

2. Proposed System Architecture .............................................................................................. 7 

2.1 Overview ....................................................................................................................... 7 

2.2 System Decomposition ................................................................................................... 7 

2.2.1 Presentation Tier ..................................................................................................... 9 

2.2.2 Logic Tier................................................................................................................. 9 

2.2.4 Messaging System ................................................................................................... 9 

2.2.5 Match Controller ..................................................................................................... 9 

2.3 Hardware/Software mapping ........................................................................................ 10 

2.4 Persistent Data Management ........................................................................................ 10 

2.5 Access Control and Security .......................................................................................... 11 

2.6 Global Software Control ............................................................................................... 11 

2.7 Boundary Conditions .................................................................................................... 12 

3. Subsystem Services ........................................................................................................... 13 

3.1 Subsystem Service for Data Management ...................................................................... 14 

3.2 Subsystem Service for Match Algorithm ......................................................................... 15 

3.3 Subsystem Service for Messaging Service ....................................................................... 16 

3.4 Architectural Style........................................................................................................ 17 

4. References ........................................................................................................................ 18 

 

 

 



3 
 

 

 

 

1. Introductıon  

1.1 Purpose of The System 

QUEX is a mobile social media application which aims to find its users trustworthy 

individuals to help them with the problems encountered in their daily routine. The 

program provides a platform that connects the user to another user with required skills 

to try and solve any problem that can occur such as computer hardware or software 

issues, daily decision-making, travelling or dining. 

Even the simplest problems take huge amount of time when the person facing the 

problem is not familiar with the problem domain. In addition, although there may be 

lots of solutions described online to the problem, unfamiliarity with the problem domain 

makes it harder for the person to understand and put the solution into practice. QUEX 

aims to solve this problem. 

The basic principle of the program assumes that there exists a user with a problem, 

the user notifies the program of that problem and gets assigned to an another user of 

the program who is close by if that user is considered an expert on the topic based on 

user background, in app ratings and user history with similar problems. After matching 

the users, QUEX then allows these users to start a conversation in order to come up with 

a solution. 

We are trying to solve the problem of “expert finding,” therefore, there is a 

noticeable amount of features regarding expertise validation. The program is designed 

to fuse certain methods in order to determine which user would be the most 

appropriate and helpful for which problem. QUEX considers the feedback from users and 

the user’s preferences in their profiles. The program uses the GPS data of its users to 

consider how close the potential expert is to the user with the problem. The closest 

possible expert is generally the best match. However, there also exist situations where 

the proximity of the expert is irrelevant, so the user can ignore the generic matching 



4 
 

method and push the notification directly to main dashboard under a certain category 

where the problem can be seen by users without matching. This use cases that benefit 

from locality can present themselves in a variety of situations. 

Consider that you are in a university campus and you are having trouble with your 

computer. A simple notification to QUEX can quickly refer you to an engineering student 

t whom may be able to help you instantly. In completely different setting imagine that 

you are standing in front of the movie theater and trying to decide which movie to see, 

notifying the program will potentially result in a match with another user who just come 

out of a movie in that theater. The locality (user GPS data) aspect of the program 

provides the user with exclusive information that cannot be found on the internet such 

as how to connect to Bilkent VPN for the first use case example or information about the 

sound system of the movie theater for the second example. 

1.2 Design Goals 

1.2.1 Extensibility 

QUEX is a nonspecific question and answer platform. As it doesn’t focus into a single 

domain, it is difficult to predict the domain specific usage of the application. Although it 

is general-purpose, users may mostly use the application for a single or several domains, 

restaurant and movie recommendation, for example. Depending on the usage therefore, 

additional functionalities and changes may be added to meet specialized user demands. 

This brings the extensibility of current features as a concern. 

1.2.2 Supportability 

QUEX should be easily adapted to new technologies or features via new modules. 

Object oriented design principles will allow for these type of expansions. New updates 

will be regularly provided to make sure the application is up to date and innovative. 

1.2.3 Usability 

QUEX targets users from a variety of domains. In order to be appealing for a broad 

target group like this, QUEX working mechanisms must be easy to understand without 

an extensive guide or further instructions. Only some tips should be shown in the 



5 
 

application to make some features easier to understand. Also, a friendly user interface is 

necessary since the targeted user base is this large. 

1.2.4 Availability 

QUEX server should always be available for the users. QUEX will be a mobile 

application which can be accessed very easily and at any time of the day. The application 

should be free to use, users can download and use it without paying money. 

1.2.5 Reliability 

Bugs and errors should be eliminated from the final version of the application. QUEX 

should detect any undesired substrings with its black-list mechanism such as bank 

account numbers to prevent use case of making profit by the application. Personal data 

of the users should be preserved well. The Firebase Real Time Database provides 

security management for our application. Authentications, validations and permissions 

can be set easily because of our extensive Google Firebase integration.  

1.2.6 Portability 

QUEX will be made for Android system but it can be ported to different operating 

systems like iOS, Windows with a little effort. Different ports of the program may be 

provided after the first release.  

1.2.7 Scalability 

Increasing number of users is both an expectation and purpose of QUEX. QUEX needs 

to adapt and handle this increase. More importantly, the question and answers in the 

database will not be deleted but kept for future reference. This means that the data of 

question topics will never decrease but increase cumulatively. QUEX needs to handle 

this growing data and such data should be evaluated regarding its relevance periodically. 

 

 

 

 

 



6 
 

 

1.3 Definitions 

API: Application Programming Interface. 

Google Firebase: A collection of services and APIs for android programs developed 

by Google. 

MVP: Model View Presenter. 

NoSQL: Not Only SQL 

Questioner: A user who ask the question.  

Expert: A user who is capable of answering the questioner problem. 

1.4 Overview 

The idea of QUEX came from the problem of expert finding. QUEX aims to solve this 

problem in a broad range of domains, in 1-to-1 manner, and in real-time if possible. 

These approaches make QUEX different than other question & answer sites such as 

Stack Overflow. While pursuing this goal, we value some design goals such as 

extensibility, usability and scalability. Our choices of design goals are mainly due to our 

choice of building the application non-domain-specific, as this causes a non-uniform 

group of people to be targeted.  Another important factor in our design goals is the 

possible large amount of the data involved. There were also other aspects in 

consideration like performance but this is a desirable element of design for any 

application therefore this report does not specifically argue elements like performance 

or responsiveness.  The mission of QUEX is to solve the problem of expert finding in a 

rapid and generic way while considering the end users own immediate vicinity when it 

has relevance to the possible solutions of the question at hand. 

 

 

 

 

 

 



7 
 

 

2. Proposed System Architecture 

2.1 Overview 

QUEX will be an Android application whose main functionality is to connect people 

who need help and people who can help in real-time, if possible. In addition, previous 

problems people faced should be kept and updated for future reference for others who 

could face a similar problem and provide the old solutions to them in a reliable way. 

Besides these, security is an obvious concern. Some technical necessities in a broad 

sense are arising in order to provide these functions with an emphasize on concerns and 

design goals, are to allow users to use their Facebook/Google accounts to log in, match 

users in a reliable way in terms of the topic and the expertise relation, allow them to 

communicate and storing the data. Taking all these into account with the described 

design goals in the previous sections, the following sections will address the system 

architecture we propose to maintain necessary functionalities while achieving design 

goals, in the subtitles of system decomposition, hardware/software mapping, data 

management, access control and security.  

2.2 System Decomposition 

The derived problem sets to be handled are getting user location, matching users, 

messaging, storing data and notifying users and the corresponding subsystems are 

Match Controller, Chat Controller, Firebase Real Time Database and Authentication. We 

used the 3 tier module view in the system decomposition.  

 



8 
 

  

1- 3 tier module view of QUEX 

 

 

 



9 
 

 

2.2.1 Presentation Tier 

The presentation layer includes the subsystem GUI Manager, which includes the 

subsystem dashboard controller. These subsystems are responsible for presenting the data 

while allowing a user interface for the end-user of application to interact with the 

application. 

2.2.2 Logic Tier 

This layer includes chat, account, match controller and topic subsystems. The bulk of 

the functionality lies here and the rest of the tiers are either concerned with presenting 

these features to users or storing data for the needs of the application 

2.2.3 Login System 

This subsystem is responsible for authenticating our users. It does so by connecting 

to Firebase Authentication API which provides us with reliable and extendable functionality. 

2.2.4 Messaging System 

Messaging subsystem consists of Inbox and Chat controller. It is responsible for 

sending and receiving messages. It connects to the Firebase Cloud Messaging service and 

also utilizes its capabilities for sending notifications which could be set on real time or ahead 

of time (these notifications are not from user to user but from the developer s to users). 

2.2.5 Match Controller  

Match controller is responsible for searching a suitable expert for the problem. It is 

triggered with topic creation by the user who has a problem. If a match has found, it calls 

the chat subservice to allow the expert and the user to communicate. 

2.2.6 Data Tier 

     Google’s Firebase Real Time Database is used for storage. This is a cloud stored real 

time NoSQL database. The reason behind selecting this database is its performance acquired 

from the utilization of data synchronization in real time. Also the cloud aspect provides a 

certain comfort to the application regarding stored data. With cloud storage managing the 

amount data stored is much more convenient.  



10 
 

 

2.3 Hardware/Software mapping 

QUEX’s presentation and logic tiers will be mapped to the Android device. 

Subsystems in the logic tier will provide the interface on connecting, manipulating and 

retrieving data, the application will synchronize with the server when there is new data. 

The application will require internet connection and the GPS component of the Android 

phone. 

 

 

2- Hardware/software mapping of QUEX 

 

 

2.4 Persistent Data Management 

QUEX is an application which aims to instantly match a questioner with an expert. To 

reach this purpose, server and the application should have a fast connection since 

efficiency is important. Also, we need to store lots of data such as user profiles, settings, 

topics, messages etc., Google’s Firebase Platform has a cloud stored real time NoSQL 



11 
 

database. This feature complied with all of our needs and allowed the team to focus 

more on user side of the application. 

 

2.5 Access Control and Security 

Users need to sign up with their full name, username, email and password to use 

features of QUEX. Facebook and Google accounts can also be used to access features of 

the application. Then, QUEX assigns some expertise for the user by fetching profile 

information from the chosen platform if anything useful is available.  User can select 

new expertise or remove existing ones in the profile section. User can save his/her 

account with a registered email address in his/her profile. The Firebase Real Time 

Database handles security issues which includes permissions, validations and 

authentications. The application will need network connection to run. 

 

2.6 Global Software Control 

 The application is event driven and utilizes the model view presenter architectural 

style. Each screen displayed to the user is a view and each request created by the user 

runs the corresponding code segment in the application logic(model). The outputs of the 

program are updated when there is new information available (synchronization). The 

presenter segment is responsible from the software control. This segment connects 

model and view segments together therefore it handles delivery of model outputs to 

views as inputs or view outputs to model inputs.  

 

 

 

 

 

 

 

 



12 
 

 

2.7 Boundary Conditions  

 

● Initialization: Firstly, user needs to download mobile application of QUEX on his/her 

Android device. When user starts the application for the first time, a sign up screen 

will be appeared. He/she can use Facebook or Google account to login to the system 

directly, or user can fill the corresponding fields with proper information (full name, 

user name, e-mail and password) to create a QUEX account. When he/she enters the 

true information on login screen, user will be allowed into the application. At this 

point, user can use QUEX. When the user opens the QUEX application again, he/she 

does not need login again. He/she will be already logged-in after the first login 

process. 

● Termination: Log out option is one of the ways for terminating a user session. When 

user logs out, QUEX redirects he/she to login page again. Also, because of this is a 

mobile application for an Android device, users can directly close the program and 

get back to the main menu of the mobile phone. 

● Failure: User actions may cause failures in the system. If user does not fill the 

necessary fields in QUEX when he/she tries to login, the application will show 

corresponding error messages to the user. In failure on internet connection, the 

application will not work. If there is a problem in the API’s which QUEX utilizes this 

will be reflected in QUEX. 

 

 

 

 

 

 

 

 

 

 



13 
 

3. Subsystem Services 

The subsystem services are decomposed regarding the grouping according to the 3-

tier view above section 2.2. A more detailed decomposition of QUEX is given below. 

 

3- Decomposition view of QUEX 

 



14 
 

3.1 Subsystem Service for Data Management 

 

 

 

Concept Description of the Solution Domain 

Concept 

Firebase Real time Database[1] NoSQL cloud store database, part of 

Firebase Platform 

Account Manages user information, preferences 

User End user account type 

Admin Account type of developers and admins 

Profile Has user information and preferences 

Inbox Collects the questioner chat with experts 

Chat Has the messaging functionality 

 

 

 

4- data management subsystem 



15 
 

 

3.2 Subsystem Service for Match Algorithm 

 

 

 

Concept Description of the Solution Domain 

Concept 

Match Controller Controls matching process 

Firebase Cloud Messaging Notification[1] Handles the notifications of the system 

Google Maps API[2] Getting the GPS data of the users 

Topic Questioners problem that write on the 

program 

Firebase Cloud Messaging[1] Messaging service of the program 

5- Matching Subsystem 



16 
 

 

 

3.3 Subsystem Service for Messaging Service 

 

 

Concept  Description of the Solution Domain 

Concept 

Questioner The user who write the topic to the system 

Expert The user who matched and answer the 

topic of the questioner 

Chat Has the messaging functionality 

Inbox Collects the questioner chat with experts 

Chat Controller Controller of the chat functionality 

Dashboard Controller Controller of the dashboard of the program, 

locally stores data at runtime 

Firebase Cloud Messaging[1] Handles the send and receive messaging 

between the questioner and expert 

 

6- Messaging Subsystem 



17 
 

3.4 Architectural Style 

The MVP architectural style is selected for QUEX application because it has integrated 

XML modules in it. These modules do not have any logic or decision making in them. They 

are used for style and user interface design. This allows for XML components to be seen as 

views. If the XML modules had logic in them, then the decision of architectural style would 

be moved towards to MVC (Model View Controller) style which allows for communication 

between view and model components. MVC is still a suitable architecture and it could be 

interchanged without much effort with the current style. However; the current MVP style is 

more contemporary for Android development process.  

MVP is also preferable for its higher level of decomposition which avoids unnecessary 

architectural complexity which results with easier implementation process. This design 

choice also made maintaining the code base easier for the development team. 

Model component is responsible from the system logic and system state storage. View 

component is responsible from the GUI of the system. It handles the events that occurred 

by the presenter component. Presenter component’s major functionality is providing 

communication of the view and model components, it sends queries to the model and 

updates the view accordingly 



18 
 

 

4. References 

 

[1] Firebase. (2017). Firebase. [online] Available at: https://firebase.google.com/ [Accessed 

28 Nov. 2017]. 

[2] Google Developers. (2017). The Google Maps Geolocation API, Google Maps Geolocation 

API | Google Developers. [online] Available at: 

https://developers.google.com/maps/documentation/geolocation/intro [Accessed 28 Nov. 

2017]. 

[3] Developer.android.com. (2017). Android Developers. [online] Available at: 

https://developer.android.com/index.html [Accessed 28 Nov. 2017]. 

[4] Amazon Web Services, Inc. (2017). What is NoSQL? – Amazon Web Services (AWS). 

[online] Available at: https://aws.amazon.com/nosql/ [Accessed 28 Nov. 2017]. 

 


