

Senior Design Project

QUEX

Low-Level Design Report

Project Members:

Barış Ardıç 21401578

Emir Acımış 21201233

Umutcan Aşutlu 21301093

Mert Kara 21400976

Atakan Özdemir 21301134

Supervisor: Çiğdem Gündüz Demir

Jury Members: Fazlı Can, Hamdi Dibeklioğlu

Table of Contents

1.Introduction .. 3

1.1 Object design trade-offs ... 3

Functionality vs Ease of Use ... 3

Traditional vs Innovative... 4

Performance vs Cost ... 4

Security vs Cost .. 4

1.2 Interface documentation guidelines ... 4

1.3 Engineering standards ... 5

1.4 Definitions, acronyms, and abbreviations .. 5

2. Packages ... 5

2.1Client .. 6

2.1.1 ViewPackage .. 7

2.1.2 ControllerPackage ... 7

2.1.3 ModelPackage ... 7

2.2 Server ... 7

2.2.1 DataPackage .. 7

3. Class Interfaces ... 8

4. Glossary .. 13

5. References .. 14

1.Introduction
 The main purpose of Quex is to find its users trustworthy individuals when

they need help in their daily routine. The program provides help about variety of

topics like computer hardware or software, daily decision-making, travelling,

entertainment or dining. Even the simplest problems we encountered in our daily

routine may take lots of time if we cannot get assistance from a person who is

experienced with our problem. This is why we focus on “expert finding”, the

program searches for nearest expert about a problem and match user with expert so

that they can talk and share knowledge about the program via online chat. The

purpose of using location based expert matching is, if the users trust each other,

they can meet to solve the problem. If program fails to find an expert around the

user or the expert cannot solve the problem of the other user, program pushes the

problem directly to main dashboard under a certain category. The problems under

the dashboard can be seen by every user of the system. So, if an expert desires to

help someone, they can directly chat with the user. The user which pushed the

problem to the QUEX can also write down “unsuccessful solutions” under the

problem which is in the dashboard, so other users can see and suggest a different

solution. After the chat between user and the expert closes, user can give “+” rating

to the expert. This rating will be used for making other users comfortable about the

expert.

1.1 Object design trade-offs
Functionality vs Ease of Use
 Quex needs to have a wide range of active users, because a crowded community

provides a better cooperation among users. Especially, due to the fact that Quex focuses on

expert finding, it needs lots of users to match them with each other. So that ease of use is

one of the most important feature of Quex. Some features are restricted to eliminate

complex interface risks.

Traditional vs Innovative
 Innovative interfaces bring risks with it since users generally are not familiar with

new interfaces and designs in applications. There is always a risk that users may find

interface too difficult to adapt. Because of that, we decided to adopt a traditional layout to

make users quickly learn about the program. It also eases the use of the program.

Performance vs Cost
 Quex should be an “agile” program which means it needs fast response time when it

is searching and matching. Many users may be search for an expert simultaneously, so they

need to reach a solution in a short time. So that performance is a very serious issue and it is

definitely needed, it is clear that we choose performance over cost.

Security vs Cost
Because users will talk with many of other users in the program, it is important to

provide that their personal information like open address and location out of limits for the

others. Also censorship of unwanted or inappropriate chat materials like swear words,

nudity and bank account numbers is an important matter. Security of Quex should be

perfect to reach this goal, so we go with security over cost.

1.2 Interface documentation guidelines

Name of the Class

Description Description of the class

Attribute Attributes of the class

Operation Operations of the class (void if not
mentioned)

1.3 Engineering standards
 The low level design report is written in IEEE standard engineering writing form

which is a widely accepted by engineers. The UML which is very common in industry is used

for graphical representation of the system with its components and classes.

1.4 Definitions, acronyms, and abbreviations
 UML: Unified Modeling Language

 IEEE: The Institute of Electrical and Electronics Engineers

2. Packages
Quex’ system makes use of MVP architecture. The MVP architectural style is selected

for QUEX application because it has integrated XML modules in it. These modules do not

have any logic or decision making in them. They are used for style and user interface design.

This allows for XML components to be seen as views. Our system is decomposed into 4

packages in compliance with the following diagrams as ViewPackage, ControllerPackage,

ModelPackage and DataPackage.

In relation to figure-2, for example, the dataPackage includes the Firebase services.

Topic, User, Inbox and Chat systems are included in the modelPackage, ChatController and

MatchController are included in the controllerPackage and dashBoardController is in

viewPackage.

2.1Client
Client subsystem is the user part of the program. It is also responsible for

presentation of the data it collects from server to user, managing the operations of user,

and send necessary notifications.

2.1.1 ViewPackage
 View package consists of view objects which are the visible part of the program to

the user. It provides user with the interface elements. Main purpose of these are to display

the data from the model objects and create the environment for management of the data.

2.1.2 ControllerPackage
ControllerPackage is responsible for the bridging of model and view classes. It

includes the classes for subsystems such as messaging and matching. It manages the

connection to Firebase API. It manages and sends queries to API, and then, receives and

draws out the results via connection to viewPackage. It manages the connection with the

network.

2.1.3 ModelPackage
ModelPackage classes have relationships with View and Controller classes and

constructs the mains template of objects of Quex, such as User, Topic and Message classes.

2.2 Server
2.2.1 DataPackage

This package provides the interface to handle the connection, the API requests and

responses between the server and its clients while providing the interface to make queries

to the database to find topics or experts. It is responsible for simple database transactions,

insertions, updates or deletes. In addition, it includes the backend logic of matching,

searching and messaging subsystems.

3. Class Interfaces

LoginOrRegister Activity

Description The first activity of the application which direct
user to Login activity or register activity. The
Google login and Facebook login is also included
in this activity.

Attribute

-mLogin : Button
-mRegister : Button
-signInButton : Button
-Rc_sign_in : int
-mAuth : FirebaseAuth
-mAuthListener:FirebaseAuth.AuthStateListener
-mGoogleSignInClient : GoogleSignInClient
-TAG : String

Operation:

+onCreate(Bundle savedInstanceState)
+onStart()
+onActivityResult(int requestCode, int
+resultCode, Intent data)
+firebaseAuthWithGoogle(GoogleSignInAccount
account)
+signIn()

Login Activity

Description This class is for handling login activity for the user. The basic
inputs are email and password given by the user.

Attribute -mLogin:Button
-mEmail:EditText
-mPassword:EditText
-mAuth:FirebaseAuth
-mAuthStateListener:FirebaseAuth.AuthStateListener

Operation +onCreate(Bundle savedInstanceState)
+onClick(View v)
+onComplete(@NonNull Task<AuthResult> task)
+onStart()
+onStop()

Register Activity

Description This class is handling register activity for the
user to create an account for using the
application.

Attribute -mRegister : Button
-mEmail : EditText
-mPassword : EditText
-mAuth : FirebaseAuth
-mAuth : FirebaseAuth.AuthStateListener

Operation +onCreate(Bundle savedInstanceState)
+onStart()
+onStop()

User Class

Description The instances of this class holds user
information referring to a unique user session.

Attribute -Name: String
-Surname : String
-Email : String
-Bio : String
-UserId : String

Operation +getUserID()
+onCreate(Bundle savedInstanceState)
+onStart()
+onStop()

Dashboard Activity

Description This class is showing topics on the system that if
users did not find a match for topics they write.
It is added on the dashboard after match activity
is done.

Attribute -topic:Topic[]

Operation +displayTopic()
+sortTopic(Category c)
+filterTopic(Category c)
+onCreate(Bundle savedInstanceState)
+onStart()
+onStop()

Topic Class

Description The created topic is added to the system
with this class.

Attribute -cat:Category
-TopicDesc:EditText
-solved:boolean

Operation +sentDashboard()
+sentMatch()
+onCreate(BundlesavedInstanceState)

Profile Activity

Description Saves user information for app functions, also displays
the information back to the user as a page.

Attribute -mDone:Button
-mJob:EditText
-mBio:EditText
-mPhone:EditText
-mAuth: FirebaseAuth
-mAuthListener:FirebaseAuth.AuthStateListener
-mDatabase: DatabaseReference

Operation +onCreate(Bundle savedInstanceState)
+onStart()
+onStop()
+onClick(View v)
+onAuthStateChanged(@NonNull FirebaseAuth
firebaseAuth)

Match Activity

Description This module has the algorithm and intents
of the matching functionality

Attribute -Questioneer:User
-top:Topic

Operation +getLocation()
+matchMaxDistance:float
+findMatch(Questioneer,top)
+findMatchL(Questioneer,top)
+onCreate(Bundle savedInstanceState)
+onStart()
+onStop()

Inbox Activity

Description This class is for handling the inbox for the
user. It shows the past and present
messages that the user sent out and
received.

Attribute -chats:Chat[]

Operation +displayChat(Chat c)
+deleteChat(Chat c)
+onCreate(Bundle savedInstanceState)
+onStart()
+onStop()

Chat Class

Description This class is handling the users do the
messaging with the other users. Users get to
send/receive messages with this class.

Attribute -Questioneer:User
-Expert:User
-top:Topic
-mes:String[]
-solved:boolean

Operation +sentMes(Sting message)
+MesViewed()
+sentLoc()
+TopicSolved()
+onCreate(Bundle savedInstanceState)
+onStart()
+onStop()

4. Glossary

Android: Mobile phone operating system

QUEX: Name of the application

UML: Undefined Modeling Language

GPS: The global positioning system

MVP: Model-View-Presenter

5. References

[1] Firebase. (2017). Firebase. [online] Available at: https://firebase.google.com/ [Accessed

11 Feb. 2018].

[2] Google Developers. (2017). The Google Maps Geolocation API, Google Maps Geolocation

API | Google Developers. [online] Available at:

https://developers.google.com/maps/documentation/geolocation/intro [11 Feb. 2018].

[3] Developer.android.com. (2017). Android Developers. [online] Available at:

https://developer.android.com/index.html [Accessed 11 Feb. 2018].

[4] Amazon Web Services, Inc. (2017). What is NoSQL? – Amazon Web Services (AWS).

[online] Available at: https://aws.amazon.com/nosql/ [Accessed 11 Feb. 2018].

